THE STRUCTURES OF ANTIBIOTICS YL-704 C_1 , C_2 AND W_1

Sir

Recently, we have reported the structures of new macrolide antibiotics YL-704 A₁ and B₁¹⁾.* They were isolated as the main products of *Streptomyces platensis* MCRL-0388, but, in fact, they were accompanied with three minor antibiotics, YL-704 C₁, C₂ and W₁. Now, we wish to communicate on the structure elucidation of these three minor antibiotics**.

Physicochemical properties of these antibiotics were summarized in Table 1. From the data of NMR spectra, it was apparent that YL-704 C_1 , C_2 and W_1 contained an aldehyde function. This was also supported by the absorption at $2730 \sim 2750 \, \mathrm{cm}^{-1}$ of IR spectra.

The characteristic property to each of the three antibiotics was observed in

YL - 704 C2

Table 1. Physicochemical properties

			cochemical p	1 oper tres		
	YL-704 C ₁		YL-704 C ₂		YL-704 W ₁	
	colorless needle		colorless small prism		colorless plate	
m.p. Formula M.W.	$^{125\sim127^{\circ}\!\text{C}}_{^{41}\text{H}_{67}\text{NO}_{16}}_{829}$		$^{116\sim118^{\circ}\!\text{C}}_{^{40}\text{H}_{65}\text{NO}_{15}}^{1$		$159{\sim}161^{\circ}\mathrm{C} \ \mathrm{C_{43}H_{69}NO_{15}} \ 839$	
Elem. Anal. (%) C H N	obsd. 59. 45 8. 03 1. 75	calcd. 59. 35 8. 08 1. 69	obsd. 60. 21 8. 20 1. 68	calcd. 60. 08 8. 14 1. 75	obsd. 61.71 8.13 1.70	calcd. 61.50 8.22 1.67
UV (EtOH, nm)	end absorption		232.5 (log ε 4.43)		280 (log ε 4.37)	
IR (nujol, cm ⁻¹)	3460 1740 1640	2730 1730	3500 1740 1640	2740 1725	3550 2750 1737 1640	3410 1748 1690 1603
NMR (CDCl ₃ , ppm) (100 MHz)	1.00—1. 3.30 3. 4.48 4. 5.74 6.	95 4.08 67 5.18	4.65 5.		0.90—1. 3.30 3. 4.42 4. 6.05—6.	57 3.87 64 5.12
$[\alpha]_{\mathrm{D}}^{22}$ (c 1, CHCl ₃) pKa' (50% EtOH)	-69° 7.00		-42° 7.01		-32° 6.95	

^{*} These antibiotics were previously named as YL-704 A and B respectively1).

^{**} YL-704 C_1 was found to be identical with maridomycin III reported in the 11th ICAAC (Oct. 1971).

their respective UV absorption: YL-704 C_2 showed the absorption maximum at 232.5 nm like the major products A_1 and B_1 . The maximum of component W_1 was shifted to a longer wave length (280 nm) indicating the presence of the $\alpha, \beta, \gamma, \delta$ -dienone chromophore might be concerned. However, no such characteristic absorption maximum was observed in the spectrum of YL-704 C_1 .

YL-704 C₁ and C₂ afforded the diacetates of m.p. 102~104°C and m.p. 105~ 107°C respectively, by the usual acetylation precedure, while W₁ gave the monoacetate of m.p. 188~189°C. The mass spectra of these three acetates presented fragmentation patterns which were important to their structure elucidation as in the case of the diacetates of YL-704 A₁ and B₁*. Among many diagnostic fragments, those due to the two aglycone ions (AGL+, AGL-CO+) and the acyl-disaccharide ion (ADS+) were listed From these fragmentation in Table 2. patterns and the above physicochemical data, the structures of the three antibiotics were deduced as follows:

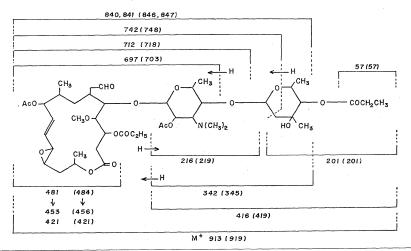
YL-704 C_1 : This component has one more oxygen atom in the aglycone portion in addition to those present in A_1 and B_1 , and has the same terminal acyl group as B_1 . The γ , δ -epoxy- α , β -en-ol system is present as an aglycone-chromophore.

YL-704 C₂: The aglycone structure of

Table 2. Diagnostic fragments in mass spectra of the acetyl derivatives

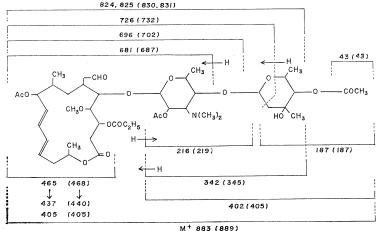
Acetates	M+ m/e	AGL+ m/e	[AGL-CO]+ m/e	${{ m ADS^+} \over m/e}$					
YL-704 A ₁ C ₄₇ H ₇₅ NO ₁₇	925	465	437	444					
YL-704 B ₁ C ₄₅ H ₇₁ NO ₁₇	897	465	437	416					
$YL-704 C_1 C_{45}H_{71}NO_{18}$	913	481	453	416					
$YL-704 C_2 C_{44}H_{69}NO_{17}$	883	465	437	402					
YL-704 W ₁ C ₄₅ H ₇₁ NO ₁₆	881	421	393	444					

this component is the same as in A_1 and B_1 , but the terminal acyl group is one methylene unit less than B_1 .

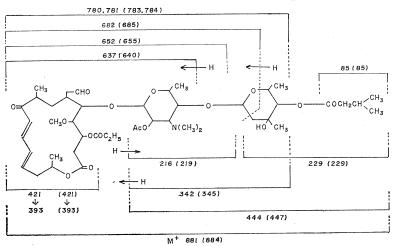

YL-704 W₁: The $\alpha, \beta, \gamma, \delta$ -dienone chromophore is present in the aglycone portion. The acyldisaccharide structure is the same as in A₁.

In accordance with the above deduction, YL-704 C_1 was oxidized by MnO₂ to give the dehydro-compound $C_{41}H_{65}NO_{16}$, m.p. $128\sim130^{\circ}C$, $\lambda_{max}^{\rm EtoH}$ 239 nm (log ε , 4.13).

This substance was very similar to carbomycin A^{2,3)} in various physicochemical properties including mass-spectral fragmentation patterns of their acetates.


YL-704 W₁ was determined to be identical with the dehydro-compound of YL-704 A₁, which was derived by MnO₂-oxidation. Besides, the mass-spectral fragmentation patterns of these compounds were quite similar to that of carbomycin B^{8,4}) except only in the moiety of the ester group sub-

Scheme 1. Diagnostic fragmentations of diacetyl YL-704 C₁



^{*} The assignment made on the acetates was fully reconfirmed by the mass spectra of the corresponding trideuteroacetates.

Scheme 2. Diagnostic fragmentations of diacetyl YL-704 C_2

Scheme 3. Diagnostic fragmentations of acetyl YL-704 W₁

stituted at C_3 of the aglycone portion.

Thus, the structures of the acetates of YL-704 C_1 , C_2 and W_1 were determined as described in Scheme 1, 2 and 3 respectively. In these schemes, assignments of the other mass-spectral fragmentation patterns of the acetates and the corresponding trideuteroacetates (in the parentheses) were also given. The present experimental results were further supported by mass spectrometry of other sixteen-membered macrolide antibiotics which will be reported elsewhere in detail.

Makoto Suzuki Isao Takamori Akio Kinumaki Yoichi Sugawara Tomoharu Okuda Microbial Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd., Toda, Saitama, Japan

(Received September 3, 1971)

References

- SUZUKI, M.; I. TAKAMORI, A. KINUMAKI, Y. SUGAWARA & T. OKUDA: The structures of antibiotics YL-704 A and B. Tetrahedron Letters 1971 (5): 435~438, 1971
- WAGNER, R.L.; F. A. HOCHSTEIN, K. MURAI, N. MESSINA & P. P. REGNA: Magnamycin. a new antibiotic. J. Am. Chem. Soc. 75: 4684~4687, 1953
- 3) OMURA, S.; A. NAKAGAWA, M. OTANI, T. HATA, H. OGURA & K. FURUHATA: Structure of the spiramycins (foromacidines) and their relationship with the leucomycins and carbomycins (Magnamycins). J. Am. Chem. Soc. 91: 3401~3404, 1969
- HOCHSTEIN, F.A. & K. MURAI: Magnamycin B, a second antibiotic from Streptomyces halstedii. J. Am. Chem. Soc. 76: 5080~5083, 1954